

Vybrid VF6 SOM Starter Kit Guide

Release 1.12.2.1

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 2/28 Release 1.12.2.1

Table of Contents

1. OVERVIEW...3
2. PRODUCT CONTENTS..3

2.1. SHIPPABLE HARDWARE ITEMS ..3
2.2. DOWNLOADABLE HARDWARE MATERIALS...3
2.3. DOWNLOADABLE SOFTWARE MATERIALS ...3
2.4. DOWNLOADABLE DOCUMENTATION MATERIALS ..4

3. SOFTWARE FUNCTIONALITY ..4
3.1. SUPPORTED FEATURES..4
3.2. NEW AND CHANGED FEATURES ..5
3.3. KNOWN PROBLEMS & LIMITATIONS..5

4. HARDWARE SETUP ..6
4.1. STANDALONE OPERATION ..6

4.1.1. Hardware Interfaces... 6
4.1.2. TWR-VF6-SOM-BSB Jumpers... 6
4.1.3. Board Connections... 7

4.2. OPERATION IN FREESCALE TOWER..7
4.3. EXTENSION INTERFACES ..8

5. VF6 SOM BOARD LINUX SOFTWARE SET-UP ...8
5.1. BOOT DEVICE CONFIGURATION...8
5.2. MIGRATION OF BOOT IMAGES TO NAND FLASH..8
5.3. U-BOOT ENVIRONMENT ...10
5.4. ETHERNET MAC ADDRESS...11
5.5. NETWORK CONFIGURATION ..11
5.6. AUTOBOOT ...11
5.7. RUNNING PRE-INSTALLED LINUX IMAGE ...11

6. PRE-LOADED LINUX IMAGE ..11
7. SOFTWARE DEVELOPMENT ENVIRONMENT ..15

7.1. DISTRIBUTION AND INSTALLATION..15
7.1.1. Distribution Image .. 15
7.1.2. ELDK Cortex-A5 Toolchain and SDK .. 15
7.1.3. Cortex-M4 Toolchain.. 16
7.1.4. Installation Tree.. 16
7.1.5. Activation.. 17
7.1.6. Dependency on Host Components .. 17

7.2. PROJECTS FRAMEWORK ..17
7.2.1. Multiple Target Projects ... 17
7.2.2. initramfs Specification File Syntax Extensions... 19
7.2.3. initramfs Specification File Helper Commands .. 19
7.2.4. Networking Demo Project .. 21

8. SOFTWARE DEVELOPMENT WORKFLOW...21
8.1. LINUX DEVELOPMENT ..21

8.1.1. Sample Linux Development Session ... 21
8.1.2. Create a New Project ... 21
8.1.3. Set Up Target for the New Project ... 21
8.1.4. Update the New Project ... 22
8.1.5. Install the New Project to Flash.. 23
8.1.6. Develop a Custom Loadable Device Driver over NFS... 23
8.1.7. Develop a Custom User-Space Application over NFS... 24

8.2. MQX DEVELOPMENT ...25
8.2.1. Cortex-M4 GNU Toolchain... 25
8.2.2. MQX BSP Source Tree .. 25
8.2.3. MQX Build .. 25
8.2.4. Run-Time Load of MQX ... 26

8.3. U-BOOT DEVELOPMENT ...26
8.3.1. U-Boot Build ... 26
8.3.2. U-Boot Self-Upgrade.. 27

9. SUPPORT...27

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 3/28 Release 1.12.2.1

1. Overview

This document is the Emcraft Systems Vybrid VF6 SOM Starter Kit Guide, Release 1.12.2.1.

The VF6 SOM starter kit provides a low-cost hardware platform enabling development of
embedded applications using the Freescale Vybrid VF6 microcontroller devices and the
Emcraft Systems VF6 System-On-Module (VF6 SOM). The kit includes the VF6 System-on-
Module itself, a Freescale Tower-compatible Development Baseboard (TWR-VF6-SOM-BSB),
and a mini-USB cable for USB-based power and serial console.

Emcraft supports Linux as an operating system for the Cortex-A5 processor core and MQX as
an RTOS for the Cortex-M4 core. An inter-core communication API (Multi-Core
Communication, or MCC) is provided for interactions between Linux applications/drivers
running on the A5 core and MQX applications running on the M4 core.

The Linux and MQX BSPs and the software development environment targeting the VF6 SOM
starter kit are available for free download from the Emcraft web site. Each starter kit comes
preloaded with U-Boot and a sample Linux/MQX image.

2. Product Contents

This product includes the following components.

2.1. Shippable Hardware Items

The following hardware items are shipped to customers of this product:

1. VF6 SOM board;

2. TWR-VF6-SOM-BSB baseboard;

3. Mini-USB cable UART/power interface.

Note that this product does not include any JTAG programmer tools or associated hardware
items, nor a Freescale Tower or additional Freescale or third-party Tower modules. Such
equipment needs to be purchased directly from respective vendors.

2.2. Downloadable Hardware Materials

The following hardware materials are available for download from Emcraft's web site to
customers of this product:

1. TWR-VF6-SOM-BSB-2A-schem.pdf - TWR-VF6-SOM-BSB schematics in PDF format;

2. TWR-VF6-SOM-BSB-2A-bom.xls - TWR-VF6-SOM-BSB Bill-Of-Materials (BOM) in Excel
format;

3. VF6-SOM.IntLib - Altium Designer 9.4 integrated library for the VF6-SOM symbol and
footprint.

2.3. Downloadable Software Materials

The following software materials are available for download from Emcraft's web site to
customers of this product:

1. u-boot-nand.flash and u-boot-qspi.flash – Prebuilt U-Boot binary file ready for
installation onto NAND or QSPI Flash (depending on chosen boot media) of the VF6 SOM.
Each kit comes preloaded with this U-Boot firmware;

2. networking.uImage – Prebuilt bootable image of a sample Linux/MQX configuration
ready for installation and loading onto the VF6 SOM. Each kit comes preloaded with this
bootable image (refer to Section 6 for detailed description of the sample image);

3. nand_fcb.bin – NAND Firmware configuration block image ready for installation onto the
VF6 SOM;

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 4/28 Release 1.12.2.1

4. u-boot-nand-migration.qspi – Special pre-built U-Boot binary designated for switching
to NAND boot for boards that boot from QSPI;

5. linux-VF6-1.12.2.1.tar.bz2 - Linux Vybrid software development environment,
including:

a) U-Boot firmware;

b) Linux kernel;

c) busybox and other target components;

d) Framework for developing multiple projects (embedded applications) from a single
installation, including sample projects allowing to kick-start software development for
the VF6 SOM.

2.4. Downloadable Documentation Materials

The following documentation materials are available for download from Emcraft's web site:

1. vf6-som-ha.pdf - Emcraft Systems VF6 SOM (System-On-Module) Hardware
Architecture specification;

2. twr-vf6-som-bsb-ha.pdf - Emcraft Systems TWR-VF6-SOM-BSB Baseboard Hardware
Architecture specification;

3. vf6-som-skg-1.12.2.1.pdf - Emcraft Systems VF6 SOM Starter Kit Guide (this
document).

3. Software Functionality

3.1. Supported Features

The following list summarizes the features and capabilities of Linux Vybrid, Release 1.12.2.1:

• U-Boot firmware:

o Runs on the Cortex-A5 core;

o U-Boot v2011.12;

o Target initialization from power-on / reset;

o Loads from external Flash and runs from RAM;

o Serial console;

o Ethernet driver for loading images to the target from network;

o Serial driver for loading images to the target over UART;

o Device driver for Flash and self-upgrade capability;

o Device driver for storing environment and Linux images in Flash;

o Autoboot feature, allowing boot of OS images from Flash or other storage with no
operator intervention;

o Persistent environment in Flash for customization of target operation;

o Sophisticated command interface for maintenance and development of the target;

o Loads Linux kernel from a software-specified boot device, typically, QSPI or NAND
Flash.

• Linux:

o Runs on the Cortex-A5 core;

o Linux kernel v3.0.15;

o Serial device driver and Linux console;

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 5/28 Release 1.12.2.1

o Ethernet device driver and TCP/IP networking;

o MTD-based Flash partitioning and persistent JFFS2 Flash file system in Flash;

o Device drivers for all key I/O interfaces of the Vybrid;

o busybox v1.17;

o POSIX pthreads;

o Loadable kernel modules;

o Specifically optimized for fast boot-up;

o Boot of the Cortex-M4 from a binary file in the Linux file system;

o Low-level Linux-side inter-core MCC communications supported with appropriate
device drivers/libraries;

o Large pool of pre-built Linux packages ready for the Cortex-A5 core;

o Yocto-based build and distribution model.

• MQX:

o Runs on the Cortex-M4 core;

o MQX RTOS v.4.0.1;

o Support for select I/O interfaces of the Vybrid;

o Low-level MCC communications supported with appropriate libraries.

• Multi-Core Communication (MCC):

o Lightweight and fast inter-core API;

o API calls are simple send / receive;

o Uses shared SRAM and interrupts;

o Received data can be passed by pointer or copied.

• Development environment:

o Linux-hosted cross-development environment;

o Separate GNU toolchains for Linux/A5 and MQX/M4;

o Sample projects showcasing typical embedded configurations (Linux shell,
networking, MCC-based interactions between Linux/A5 and MQX/M4; Qt GUI, etc);

o Development of multiple projects (embedded applications) from a single installation.

3.2. New and Changed Features

This section lists new and changed features of this release:

1. Support Micrel KSZ8081RNB Ethernet PHY in U-Boot and Linux.
ID: 103292.

3.3. Known Problems & Limitations

This section lists known problems and limitations of this release:

1. The JFFS2 filesystem works unreliably with QSPI MTD devices.
ID: 98172.

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 6/28 Release 1.12.2.1

4. Hardware Setup

This section explains how to set up the VF6 SOM Starter Kit hardware.

4.1. Standalone Operation

Each kit includes a Vybrid System-On-Module (VF6 SOM) and a TWR-VF6-SOM-BSB
development baseboard. The VF6 SOM comes plugged into the TWR-VF6-SOM-BSB
baseboard.

The TWR-VF6-SOM-BSB is a module compatible with the Freescale Tower system. However,
as shipped by Emcraft, it can be used in standalone mode as well, without a Freescale Tower
or any additional Tower modules.

4.1.1. Hardware Interfaces

The following picture shows the components and interfaces provided by the VF6 SOM Starter
Kit in standalone mode.

4.1.2. TWR-VF6-SOM-BSB Jumpers

The following jumpers must be configured on the TWR-VF6-SOM-BSB board:

Jumper Configuration Notes

JP1 1-2 closed, 3-4 closed To enable power on the VF6 SOM (VCC3)
and save the battery life when the mini-
USB is connected.

JP2 All pins open
(SAI2 is not looped)

Used for local looping of the Vybrid SAI2
interface.

JP3 1-3 open, 2-4 closed To use the mini-USB port as the power
source.

VF6 SOM
TWR-VF6-SOM-BSB

baseboard

2x Ethernet RJ-45

Breadboard area USB power
and UARTs

JTAG connector

Reset push button
SD Card holder

USB OTG

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 7/28 Release 1.12.2.1

Jumper Configuration Notes

JP4 1-2 open
(USB1 connected to the P5 USB
connector),
3-4 closed,
7-8 closed
(UART2 connected to the USB-
UART bridge (U1) and available
on the P1 USB connector)

Controls routing of the Vybrid USB1
interface. Controls routing of the Vybrid
UART2 interface.

4.1.3. Board Connections

To power the hardware platform up, simply connect it to a PC / notebook by plugging the
mini-USB Y-cable into the P1 mini-USB connector on the TWR-VF6-SOM-BSB board. As soon
as the connection to the PC has been made, the LED DS2 should light up, indicating that the
board is up and running.

On the PC host side, the U-Boot/Linux and MQX consoles are available via the P1 dual port
UART/USB connector. The software installed on the VF6 SOM configures both serial consoles
for a 115.2 Kbs terminal.

On some Linux distributions, connecting to the dual port UART/USB device causes the
Modem Manager package to try opening the TTY device and sending modem commands to it,
thus occupying the port. To avoid this effect, the ModemManager package must be disabled on
the host with the following command:

sudo mv /usr/share/dbus-1/system-services/org.freedesktop.ModemManager.service
/usr/share/dbus-1/system-services/org.freedesktop.ModemManager.service.disabled

On the Linux host, the dmesg command can be used to figure out the TTY devices
corresponding to the two serial consoles:

$ dmesg | tail
[495846.154337] cp210x 1-5.1.5:1.0: cp210x converter detected
[495846.216898] usb 1-5.1.5: reset full-speed USB device number 8 using ehci-pci
[495846.292179] usb 1-5.1.5: cp210x converter now attached to ttyUSB0
[495846.292643] usb 1-5.1.5: cp210x converter now attached to ttyUSB1

The U-Boot/Linux serial console is available on the second USB TTY device. For example:

$ picocom –l /dev/ttyUSB1 –b 115200

The MQX serial console is available on the first USB TTY device. For example:

$ picocom –l /dev/ttyUSB0 –b 115200

To provide network connectivity to the board, connect it into your LAN by plugging a
standard Ethernet cable into the lower slot of the dual-port Ethernet connector. The board is
pre-configured with an IP address of 192.168.0.2.

4.2. Operation in Freescale Tower

In addition to being able to operate in standalone mode, the TWR-VF6-SOM-BSB board can
also be used as part of the modular Freescale Tower System development platform. The
TWR-VF6-SOM-BSB can interoperate with all the standard peripheral modules of the
Freescale Tower System, such as TWR-SER, TWR-SER2, TWR-LCD-RGB, and TWR-DOCK
providing the various I/O interfaces unavailable in the standalone mode.

The following picture shows the TWR-VF6-SOM-BSB module with the VF6-SOM plugged in
configured for operation in the Freescale Tower:

Note: The VF6-SOM Starter kit does not include a Freescale Tower or any additional TWR
modules or hardware.

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 8/28 Release 1.12.2.1

4.3. Extension Interfaces

For description of the extension interfaces provided by the VF6 SOM on the module
connectors refer to Emcraft Systems VF6 SOM (System-On-Module) Hardware Architecture.

For description of the extension interfaces provided by the TWR-VF6-SOM-BSB baseboard
refer to Emcraft Systems TWR-VF6-SOM-BSB Baseboard Hardware Architecture.

The above mentioned documents can be downloaded from the following page on the Emcraft
web site:

http://www.emcraft.com/som/vf6#hardware

5. VF6 SOM Board Linux Software Set-up

5.1. Boot Device Configuration

Since release 1.12.2 the Starter Kit supports booting from the QSPI and NAND Flash devices
available on the VF6-SOM rev 3a boards. Configuration of U-boot for proper boot device is
chosen with the CONFIG_BOOT_MEDIA_NAND and CONFIG_BOOT_MEDIA_QSPI build-time
configuration options.

VF6-SOM boards are supplied with the NAND Flash configured as the boot device. The next
section describes the process of switching to NAND boot for older VF6-SOM boards that are
configured for QSPI boot.

5.2. Migration of Boot Images to NAND Flash

This section describes the process of switching to NAND Flash as the boot device and storage
of the Linux image for boards that boot from the QSPI Flash.

2. The following steps must be performed:
Copy the pre-built NAND migration U-Boot image (u-boot-nand-migration.qspi) to
the TFTP folder of the TFTP server.

3. On the target, download the U-Boot image from the TFTP server:

Vybrid U-Boot > tftp u-boot-nand-migration.qspi
Using FEC0 device
TFTP from server 172.17.0.1; our IP address is 172.17.44.46
Filename 'u-boot-nand-migration.qspi'.
Load address: 0x80007fc0

http://www.emcraft.com/som/vf6#hardware�

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 9/28 Release 1.12.2.1

Loading: ###############
done
Bytes transferred = 219256 (35878 hex)

4. Program the migration U-Boot image to the QSPI Flash.

Vybrid U-Boot > qspi probe 1;qspi erase 0 +${filesize};qspi write ${loadaddr} 0
${filesize}
Vybrid U-Boot >

5. Print the current settings of the U-Boot environment:

Vybrid U-Boot > printenv

6. Reset the board to activate the migration version of U-Boot.

7. As the environment has been reset to the default values, it may be needed to restore
some environment variables, such as ipaddr, serverip, and so on (use the values
printed out by the printenv command above):

Vybrid U-Boot > setenv ipaddr 172.17.44.46
Vybrid U-Boot > setenv serverip 172.17.0.1
Vybrid U-Boot > setenv netmask 255.255.0.0

8. On the target, download the NAND firmware configuration block image from the TFTP
server and program the image to NAND Flash:

Vybrid U-Boot > tftp nand_fcb.bin
Using FEC0 device
TFTP from server 172.17.0.1; our IP address is 172.17.44.46
Filename 'nand_fcb.bin'.
Load address: 0x80007fc0
Loading: ##
done
Bytes transferred = 16384 (4000 hex)
Vybrid U-Boot > nand erase 0 20000

NAND erase: device 0 offset 0x0, size 0x20000
Erasing at 0x0 -- 100% complete.
OK
Vybrid U-Boot > nand write ${loadaddr} 0 4000

NAND write: device 0 offset 0x0, size 0x4000
16384 bytes written: OK

9. On the target, download the U-Boot image from the TFTP server and program the image
to the NAND Flash:

Vybrid U-Boot > tftp u-boot.flash
Using FEC0 device
TFTP from server 172.17.0.1; our IP address is 172.17.44.46
Filename 'u-boot.flash'.
Load address: 0x80007fc0
Loading: ###############
done
Bytes transferred = 219256 (35878 hex)
Vybrid U-Boot > nand erase 60000 80000;nand write ${loadaddr} 60000
${filesize}

NAND erase: device 0 offset 0x60000, size 0x80000
Erasing at 0xc0000 -- 100% complete.
OK

NAND write: device 0 offset 0x60000, size 0x35878
 219256 bytes written: OK

10. Set the Vybrid fuses to boot from the NAND Flash:

Vybrid U-Boot > set_boot_media
This will program Vybrid eFUSES to boot from NAND. This cannot be undone.
Continue? (Y/N):

Vybrid U-Boot >

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 10/28 Release 1.12.2.1

11. Reboot the board and interrupt the boot process at the U-Boot command prompt.

12. Program the Linux images to the NAND Flash as described in sections 8.1.5.

13. Reset the board and observe the Linux image boot from the NAND Flash.

5.3. U-Boot Environment

As soon as the VF6 SOM kit is powered or reset, the bootstrap sequence proceeds to boot
the U-Boot firmware from external Flash printing the following output to the Cortex-A5 serial
console:

U-Boot 2011.12-vf6-1.12.2.1 (Oct 13 2014 - 16:11:32)

CPU: Freescale VyBrid 600 family rev1.1 at 498 MHz
Board: VF6-SOM Rev 2.a, www.emcraft.com
DDR controller is initialized
DRAM: 512 MiB
NAND: 1024 MiB
MMC: FSL_SDHC: 0
Bad block table found at page 524224, version 0x01
Bad block table found at page 524160, version 0x01
nand_read_bbt: Bad block at 0x00000d340000
In: serial
Out: serial
Err: serial
Net: FEC0
Hit any key to stop autoboot: 0
Vybrid U-Boot >

Note: Bad blocks are a normal thing for NAND Flash. A special ECC recovery procedure is
implemented to recover the bad blocks data.

U-boot makes use of the so-called environment variables to define various aspects of the
target functionality. Parameters defined by the U-boot environment variables include: target
IP address, target MAC address, address in RAM where a Linux bootable images will be
loaded, and others.

To manipulate the U-Boot environment the following commands are used:

• printenv <var> - print the value of the variable var. Without arguments, prints all
environment variables:

Vybrid U-Boot > printenv
bootargs=console=ttyS0,115200 panic=10
bootcmd=run flashboot
bootdelay=3
baudrate=115200
...
Vybrid U-Boot >

• setenv <var> <val> - set the variable var to the value val:

Vybrid U-Boot > setenv image psl/networking.image
Vybrid U-Boot > printenv image
image=psl/networking.image
Vybrid U-Boot >

Running setenv <var> will un-set the U-Boot variable.

• saveenv - save the up-to-date U-Boot environment, possibly updated using setenv
commands, into external Flash. Running saveenv makes updates to the U-Boot
environment persistent across power cycles and resets.

Vybrid U-Boot > saveenv
Saving Environment to Flash...
...
Vybrid U-Boot >

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 11/28 Release 1.12.2.1

5.4. Ethernet MAC Address

The MAC address of the Ethernet interface is defined by the ethaddr U-Boot environment
variable. The value of the MAC address can be examined from the U-Boot command line
monitor as follows:

Vybrid U-Boot > printenv ethaddr
ethaddr=C0:B1:3C:88:88:88
Vybrid U-Boot >

Each VF6 SOM board comes with ethaddr set to a MAC address uniquely allocated by
Emcraft for the specific module. Given that each VF6 SOM board has a unique MAC address
allocated to it, there is no need to update the ethaddr variable (although it is possible to do
so).

The MAC address can be changed by modifying the ethaddr variable as follows:

Vybrid U-Boot > setenv ethaddr C0:B1:3C:88:88:89

Don't forget to store your updates to Flash using saveenv.

5.5. Network Configuration

You will have to update the network configuration of your kit to match settings of your local
environment.

Typically, all you have to do to allow loading images over network from a TFTP server is
update the U-Boot environment variables ipaddr (the module IP address) and serverip (the
IP address of the TFTP server). Here is how it is done.

Update ipaddr and serverip (use IP addresses that make sense for your LAN):

Vybrid U-Boot > setenv ipaddr 172.77.44.46
Vybrid U-Boot > setenv serverip 172.17.0.1

and then save the updated environment to external Flash using saveenv.

5.6. Autoboot

The autoboot sequence in U-Boot is controlled by the following environment variables:

• bootcmd – U-Boot command to execute automatically after reset. To disable the
autoboot, undefine this variable;

• bootdelay - delay, in seconds, before running the autoboot command. During the
bootdelay countdown, you can interrupt the autobooting by pressing any key. This will
let you to enter the U-Boot command line interface.

5.7. Running Pre-installed Linux Image

The VF6 SOM kit comes pre-loaded with a sample Linux/MQX image installed into external
Flash. To boot this sample image, just reset the board and let U-Boot perform the autoboot
sequence.

Please refer to Section 6 for a detailed description of the sample Linux image.

6. Pre-loaded Linux Image

The pre-loaded Linux image provides a demonstration of the basic shell, networking and file
system management capabilities supported by Linux running on the Cortex-A5 processor
code. Additionally, the Linux init scripts are configured to load a sample MQX image to the
Cortex-M4 core during Linux boot-up. Both Linux and MQX have the MCC (Multicore
Communication Interface) API enabled, making possible for the two processor cores to

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 12/28 Release 1.12.2.1

communicate. The demo includes a sample Linux user-space application that makes use of
the MCC API to offload certain computations to the MQX application running on the
Cortex-M4.

The following is a detailed description of the functionality available from the pre-loaded Linux
image.

On a power-on or reset, U-Boot is loaded from the external Flash to RAM. U-Boot loads the
pre-loaded Linux image from external Flash to RAM and then passes control to the Linux
kernel entry point in RAM. It is possible to interrupt the U-Boot autoboot sequence by hitting
a key before U-Boot starts relocating the Linux image to RAM and enter the U-Boot
command line interface, however assuming no operator intervention, U-Boot proceeds to
boot Linux as soon as bootdelay expires:

U-Boot 2011.12-vf6-1.12.2.1 (Oct 13 2014 - 16:11:32)

CPU: Freescale VyBrid 600 family rev1.1 at 498 MHz
Board: VF6-SOM Rev 2.a, www.emcraft.com
DDR controller is initialized
DRAM: 512 MiB
NAND: 1024 MiB
MMC: FSL_SDHC: 0
Bad block table found at page 524224, version 0x01
Bad block table found at page 524160, version 0x01
nand_read_bbt: Bad block at 0x00000d340000
In: serial
Out: serial
Err: serial
Net: FEC0
Hit any key to stop autoboot: 0
Booting kernel from Legacy Image at 80007fc0 ...
 Image Name: Linux-3.0.15-linux-vf6-1.12.2.1
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 6077668 Bytes = 5.8 MiB
 Load Address: 80008000
 Entry Point: 80008000
 Verifying Checksum ... OK
 XIP Kernel Image ... OK
OK

Starting kernel ...

Linux proceeds to bootstrap and mount the root file system and then execute the Linux
start-up scripts. The Linux kernel is configured to mount a root file system in the external
RAM using the initramfs file system. initramfs is populated with required files and utilities
at the kernel build time and then linked into the bootable Linux image. initramfs does not
have hard limits on its size and is able to grow using all otherwise unused RAM memory.

Linux version 3.0.15-vf6-1.12.2.1 (psl@ocean.emcraft.com) (gcc version 4.7.2 (GCC)) #10
Mon Oct 13 18:33:32 MSK 2014
CPU: ARMv7 Processor [410fc051] revision 1 (ARMv7), cr=10c53c7d
CPU: VIPT nonaliasing data cache, VIPT aliasing instruction cache
Machine: Emcraft Vybrid SOM Board
...
Freeing init memory: 3408K
init started: BusyBox v1.17.0 (2014-10-13 18:33:34 MSK)
eth0: Freescale FEC PHY driver [Micrel KS8051] (mii_bus:phy_addr=1:00, irq=-1)
~ #

As mentioned above, the Linux start-up scripts include commands to load an MQX binary
image to the Cortex-M4 core. The MQX image is loaded from a specified file in the Linux file
system. By the time the Linux start-up scripts are done and the first interactive shell is
started, the MQX image is fully launched on the Cortex-M4 core:

Loading /cmsis_example.bin to 0x3f400000 ...
Loaded 65624 bytes. Booting at 0x3f404081... done

As mentioned above, the Linux image installed on the kit provides a demonstration of basic
shell and network capabilities. In addition to that, the demo provides support for Flash
partitioning and persistent data storage using a JFFS2 journalled file system in external
Flash.

Here is how you can test some of these capabilities.

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 13/28 Release 1.12.2.1

From a local host, test that the target responds to ping. The Linux start-up scripts configure
the Linux Ethernet interface with an IP address defined by the U-Boot environment variable
ipaddr, so make sure you set this variable to an address that makes sense in your local
network (refer to Section 5.5).

[psl@ocean linux-vf6-1.12.2.1]$ ping 172.17.4.200
PING 172.17.4.200 (172.17.4.200) 56(84) bytes of data.
64 bytes from 172.17.4.200: icmp_seq=1 ttl=64 time=3.11 ms
64 bytes from 172.17.4.200: icmp_seq=2 ttl=64 time=0.900 ms
64 bytes from 172.17.4.200: icmp_seq=3 ttl=64 time=0.854 ms

From the target, connect to a local host using telnet:

~ # telnet 172.17.0.212

Entering character mode
Escape character is '^]'.

Fedora release 12 (Constantine)
Kernel 2.6.32.26-175.fc12.i686 on an i686 (7)
login: psl
Password:
Last login: Mon Jan 31 17:38:57 from 172.17.4.199
[psl@pvr ~]$ logout
Connection closed by foreign host
~ #

Start the telnet daemon to allow connections to the target:

~ # telnetd
~ #

Connect to the target from a local host using telnet (hit Enter on the password prompt):

[psl@ocean linux-vf6-1.12.2.1]$ telnet 172.17.4.200
Trying 172.17.4.200...
Connected to 172.17.4.200.
Escape character is '^]'.

a2f-lnx-evb login: root
Password:
~ #

On the target, configure a default gateway and the name resolver. Note how the sample
configuration below makes use of the public name server provided by Google. Note also use
of vi to edit target files under Linux:

~ # route add default gw 172.17.0.1
~ # vi /etc/resolv.conf
nameserver 8.8.8.8
~

Use wget to download a file from a remote server:

~ # wget ftp://ftp.gnu.org/README
Connecting to ftp.gnu.org (140.186.70.20:21)
README 100% |*******************************| 1765 --:--:-- ETA
~ # cat README
This is ftp.gnu.org, the FTP server of the the GNU project.

Comments, suggestions, problems and complaints should be reported via
email to <gnu@gnu.org>.
...

Use ntpd to synchronize the time on the target with the time provided by a public server:

~ # date
Thu Jan 1 00:03:08 UTC 1970
~ # ntpd -p 0.fedora.pool.ntp.org
~ # sleep 5
~ # date
Mon Dec 09 17:06:34 UTC 2013
~ #

Mount an NFS share exported by a development host:

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 14/28 Release 1.12.2.1

~ # mount -o nolock,rsize=1024 172.17.0.212:/opt/tmp /mnt
~ # mount
rootfs on / type rootfs (rw)
proc on /proc type proc (rw,relatime)
none on /dev/pts type devpts (rw,relatime,mode=600,ptmxmode=000)
172.17.0.212:/opt/tmp on /mnt type nfs
(rw,relatime,vers=3,rsize=1024,wsize=32768,namlen=255,hard,nolock,proto=udp,port=65535,t
imeo=7,retrans=3,sec=sys,mountport=65535,mountproto=,addr=172.17.0.212)
~ # ls mnt
CREDITS busybox hello.c hello2.gdb tests.tgz
address_cache demo hello.gdb runtests.sh uImage
bacserv event hello.good test window
bin hello hello2 test.log
~ #

Start the HTTP daemon:

~ # httpd -h /httpd/html
~ #

From a local host, open a Web browser to http://172.17.4.200 and watch the demo web
page provided by the VF6 SOM.

Next step is to test the non-volatile file system on external Flash. Erase the third partition of
the external Flash, format it as a JFFS2 file system and then mount the newly created file
system to a local directory:

~ # flash_eraseall -j /dev/mtd2
Erasing 64 Kibyte @ 500000 - 100% complete.Cleanmarker written at 4f0000.
~ # mkdir /m
~ # mount -t jffs2 /dev/mtdblock2 /m

Copy some files to the persistent JFFS2 file system storage:

~ # cp /bin/busybox /m
~ # cp /etc/rc /m
~ # ls -lt /m
-rwxr-xr-x 1 root root 389 Jan 1 00:19 rc
-rwxr-xr-x 1 root root 238724 Jan 1 00:18 busybox
~ # df
File system 1K-blocks Used Available Use% Mounted on
...
/dev/mtdblock2 5120 436 4684 9% /m
~ # /m/busybox echo Hello from Flash
Hello from Flash
~ # umount /m

As a demonstration of how to make use of the Cortex-M4 processor core, the pre-loaded
demo integrates an implementation of the Cortex Microcontroller Software Interface
Standard (CMSIS) DSP/FP library with MQX on the Cortex-M4 and makes the library API
available to the Cortex-A5 core via the MCC (Multi-Core Communication) interface. This
allows Linux applications and device drivers running on the Cortex-A5 to offload math-
intensive calculations to the Cortex-M4. Offloading computations to the Cortex-M4 removes
the risk of starving user applications on Cortex-A5 and at the same time ensures that math
calculations are completed in time to use them with soft real-time stacks and applications
(eg. media players) running under Linux.

Run the following command to see how Cortex-M4 can be used to perform floating-point
vector multiplications:

~ # /cmsis-demo
cmsis_demo: arm_mult_f32() of 1000 elements...
 [000]: 0.000 x 9.990 = 0.000
 [001]: 0.010 x 9.980 = 0.100
 ...
 [332]: 3.320 x 6.670 = 22.144
 [333]: 3.330 x 6.660 = 22.178
 ...
 [664]: 6.640 x 3.350 = 22.244
 [665]: 6.650 x 3.340 = 22.211
 ...
 [996]: 9.960 x 0.030 = 0.299
 [997]: 9.970 x 0.020 = 0.199
 ...

Reboot the target:

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 15/28 Release 1.12.2.1

~ # reboot -f
Restarting system.

U-Boot 2011.12-vf6-1.12.2.1 (Oct 13 2014 - 16:11:32)

7. Software Development Environment

7.1. Distribution and Installation

7.1.1. Distribution Image

The Linux VF6 software development environment is distributed as a
linux-VF6-<release>.tar.bz2 file available for download from the Emcraft site. That file
can be installed to an arbitrary directory on your Linux development host, as follows:

[psl@ocean SF]$ mkdir release
[psl@ocean SF]$ cd release
[psl@ocean release]$ tar xvjf ../linux-VF6-1.12.2.1.tar.bz2
linux-vf6-1.12.2.1/
linux-vf6-1.12.2.1/linux/
linux-vf6-1.12.2.1/linux/lib/
...
[psl@ocean SF]$ ls -l linux-vf6-1.12.2.1
total 24
drwxr-xr-x 3 psl users 4096 2014-06-06 17:06 target
-rwxr-xr-x 1 psl users 315 2014-06-06 16:26 ACTIVATE.sh
drwxr-xr-x 24 psl users 4096 2014-06-06 21:32 linux
drwxr-xr-x 5 psl users 4096 2014-06-06 20:16 projects
drwxr-xr-x 31 psl users 4096 2014-06-06 19:16 u-boot

You do not need to be the superuser (root) in order to install the Linux VF6 distribution. The
installation can be performed from an arbitrary unprivileged user account.

7.1.2. ELDK Cortex-A5 Toolchain and SDK

The Linux Vybrid software development environment makes use of a modified ELDK software
distribution developed by DENX Software Engineering (www.denx.de). The ELDK is a Yocto-
based software distribution and development environment that includes the GNU cross
development tools as well as a large number of pre-built target tools and libraries ready for
immediate use with Linux running on Cortex-A5. ELDK is provided for free with full source
code, including all patches, extensions, programs and scripts used to build the tools.

Basically, the idea is that the Emcraft provided part of the Vybrid software development
environment (refer to Section 7.1.1) includes U-Boot, the Linux kernel, the Cortex-M4 MQX
Board Software Package and some other Vybrid software components, all highly optimized
for the VF6 System-On-Module (SOM). The ELDK is used as a second component of the
Vybrid software development environment and provides the Cortex-A5 GNU toolchain as well
as a Yocto-based management of various Linux user-space components ready for the Cortex-
A5 processor core.

The ELDK release used in the Vybrid software development environment is version 5.3. This
release is based on Yocto v1.3 (Danny-8.0).

Note that starting release 1.12.2, the ELDK distribution has been enhanced by Emcraft to
add support for Java and other components. For that purpose, Emcraft updated the DENX
ELDK configuration to add the new packages and built the entire distribution from scratch.
The implication of the above is that the ELDK distribution has to be downloaded from the
Emcraft secure web site, rather than from the DENX web site.

The Vybrid development software requires the following ELDK 5.3 capabilities be installed on
the development host:

• ARMv7a toolchain (eldk-eglibc-i686-arm-toolchain-qte-5.3.sh);

• Java+Qt Embedded SDK (core-image-qte-java-sdk-generic-armv7a.tar.gz).

The following commands must be issued in an arbitrary writeable directory to install the
specified ELDK capabilities on the Linux development host:

http://www.denx.de/�

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 16/28 Release 1.12.2.1

$ mkdir eldk-download
$ cd eldk-download
$ mkdir -p targets/armv7a
$ wget --no-check-certificate https://emcraft.com/Emcraft-ELDK/install.sh
$ cd targets/armv7a
$ wget --no-check-certificate https://emcraft.com/Emcraft-ELDK/target.conf
$ wget --no-check-certificate https://emcraft.com/Emcraft-ELDK/eldk-eglibc-i686-arm-
toolchain-qte-5.3.sh
$ wget --no-check-certificate https://emcraft.com/Emcraft-ELDK/core-image-java-qte-sdk-
generic-armv7a.tar.gz
$ cd ../..
$ sh ./install.sh -d /opt/eldk-5.3-vybrid -s qte -r java-qte-sdk armv7a
$ sudo chmod 0777 /opt/eldk-5.3-vybrid/armv7a/rootfs-java-qte-sdk/var/lib/opkg
$ sudo ln -s /opt/eldk-5.3-vybrid /opt/eldk-5.3

Note that some installation commands and commands executed by install.sh are invoked
as the superuser (using sudo) and therefore these commands must be executed by root or a
user that is added to the sudo configuration file.

Additionally, the eldk-switch script must be installed on the development host as described
in http://www.denx.de/wiki/view/ELDK-5/WebHome#Section_1.8.3.

7.1.3. Cortex-M4 Toolchain

As a next step in the software installation procedure, you need to download the Sourcery
Codebench toolchain for the Cortex-M4 processor. The toolchain can be downloaded from the
following URL:

https://sourcery.mentor.com/GNUToolchain/package10387/public/arm-none-eabi/arm-2012.03-
56-arm-none-eabi.bin

The toolchain must be installed with the superuser privileges as follows:

[psl@pvr linux-vf6-1.12.2.1]$ sudo /bin/sh ./arm-2012.03-56-arm-none-eabi.bin -i console
...

During the interactive toolchain installation, the user can choose some installation options. It
is recommended to install the toolchain with the following options:

• Installation directory: /usr/local/arm-2012

• Don't create links

It is possible to install the tools to an alternative location, however, should you do that, you
will need to modify the ACTIVATE.sh script (refer to Section 7.1.5) to provide a correct path
to the installed tools (specifically, MQX_TOOLCHAIN_DIR must include a correct path to the
directory where you have installed the Cortex-M4 toolchain).

7.1.4. Installation Tree

Having been installed onto a Linux host, the Vybrid software development environment
provides the following files and directories, relative to the top of the installation directory:

• target/ - this is a directory with target components;

• target/busybox/ - busybox source and development tree;

• target/mqx-4.0 – Cortex-M4 MQX Board Support Package (BSP);

• u-boot/ - U-Boot source and development tree;

• linux/ - Linux kernel source and development tree;

• projects/ - sample projects (embedded Linux configurations);

• ACTIVATE.sh - shell script you need to perform in order to activate the Linux VF6
development environment on your host.

Additionally, the following files and directories are installed to the specified absolute paths:

• /opt/eldk-5.3-vybrid/armv7a/sysroots/i686-eldk-linux – Cortex-A5 GNU
toolchain;

http://www.denx.de/wiki/view/ELDK-5/WebHome#Section_1.8.3.�
https://sourcery.mentor.com/GNUToolchain/package10387/public/arm-none-eabi/arm-2012.03-56-arm-none-eabi.bin�
https://sourcery.mentor.com/GNUToolchain/package10387/public/arm-none-eabi/arm-2012.03-56-arm-none-eabi.bin�

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 17/28 Release 1.12.2.1

• /opt/eldk-5.3-vybrid/armv7a/rootfs-java-qte-sdk – ELDK packages and SDK;

• /usr/local/arm-2012 – Cortex-M4 GNU toolchain.

7.1.5. Activation

Whenever you want to activate a Vybrid software development session, go to the top of your
installation and run:

[psl@pvr linux-vf6-1.12.2.1]$. ACTIVATE.sh

Note the space after the dot. This command has the same effect as source ACTIVATE.sh.
This command sets up (exports) the following environment variables required by the Vybrid
software development environment:

• INSTALL_ROOT=<dir> - root directory of the installation. This variable is used by the
Vybrid make system as well as in <project>.initramfs files to provide a reference to the
installation directory;

• ELDK_ROOTFS=<path> – path to the ELDK toolchain and SDK;

• MCU=<arch> - processor architecture supported by the Vybrid software development
environment. This is set to VF6;

• MQX_TOOLCHAIN_DIR=<path> – path to the Cortex-M4 GNU toolchain;

• HOST_PYTHON_EXE_PATH=<path> – path to the host python exectable. This is set to
/usr/bin/python.

Besides defining these environment variables, ACTIVATE.sh executes the eldk-switch script
that defines environment variables required for by the Cortex-A5 GNU toolchain.

7.1.6. Dependency on Host Components

The Vybrid software development environment has the following dependencies on Linux-host
software components:

• The U-Boot, busybox and Linux kernel build systems require that certain host packages
be installed on the development host to function correctly. These packages are: make,
gcc, perl and some others. Please refer to linux/Documentation/Changes for a list of
host tools required to build the Linux kernel. The same set of tools is required for the
U-Boot and busybox build.

• Project build procedure requires the python programming language environment be
installed on the host system. By default, the /usr/bin/python path is used to invoke the
python interpreter. If the python executable resides in another location on the host, the
HOST_PYTHON_EXE_PATH in ACTIVATE.sh must be adjusted accordingly.

7.2. Projects Framework

7.2.1. Multiple Target Projects

In the Vybrid software installation, there is a directory called projects, which provides a
framework that you will be able to use to develop multiple projects (embedded applications)
from a single installation of the Vybrid software development. This directory has the
following structure:

• projects/Rules.make - build rules common for all projects;

• projects/rfs-builder.py – initramfs parser script that extends the initramfs
syntax to allow adding ELDK packages to the target file system (refer to Section 7.2.2);

• project1/ - project1 source files and build tree;

• project2/ - project2 source files and build tree;

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 18/28 Release 1.12.2.1

• ...

The distribution provides a single sample project called networking. You will be able to add
more projects to this directory and develop your own embedded applications using this
framework.

Each project directory (such as projects/networking) contains the following configuration
files:

• <project>.kernel.VF6 - kernel configuration for the project;

• <project>.busybox - busybox configuration for the project;

• <project>.initramfs - specification defining content of the root file system for the
project.

When you run make linux (or simply make) from the project directory, the build system
builds project-specific versions of the Linux kernel and busybox, then creates an initramfs
file system containing the newly built busybox binary as well as other target files defined by
the initramfs file system specification file, and finally wraps it all up into a bootable Linux
image.

Each project directory has a Makefile identifying the following make variables. You need to
set these variables correctly for your project:

• SAMPLE - the name of the project. The downloadable Linux image has this name, with the
.uImage extension. Additionally, SAMPLE is passed to the initramfs build subsystem as
a reference to the directory where file system binaries reside.

• CUSTOM_APPS - this variable provides a list of the sub-directories containing custom
applications for the project. Custom applications are built in the specified order, prior to
building the Linux kernel and initramfs images. If a project doesn't have custom
applications, the variable should be left empty.

The following make targets are implemented in projects/Rules.make common build rules
file:

• all or linux - build a bootable Linux image and place it to the project directory as
<project>.uImage;

• kclean - clean up the Linux kernel source tree by running make clean in
$(INSTALL_ROOT)/linux;

• bclean - clean up the busybox source tree by running make clean in
$(INSTALL_ROOT)/A2F/busybox;

• aclean - clean up the custom application source trees by running make clean in each
application source directory, as listed in CUSTOM_APPS;

• clean - clean up the entire project, by removing <project>.uImage and then cleaning up
the Linux kernel and busybox trees, as described above. Additionally, if CUSTOM_APPS is
not empty, make clean is performed in each custom application sub-directory;

• kmenuconfig - configure the Linux kernel by running make menuconfig in the Linux
source tree. Copy the resultant configuration file to the project directory as
<project>.kernel.VF6;

• bmenuconfig - configure the busybox tool by running make menuconfig in the busybox
source tree. Copy the resultant configuration file to the project directory as
<project>.busybox;

• clone new=<newproject> - clone the current project into a new project with a specified
name. The current project directory (with all sub-directories) is copied into the new
project directory. The project kernel, busybox and initramfs configuration files are
copied with the new name. In Makefile SAMPLE is set to the name of the new project.

The main idea behind this framework is that each project keeps its own configuration for the
Linux kernel (in the <project>.kernel.VF6 file), its own definition of the contents of the

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 19/28 Release 1.12.2.1

target file system (in the <project>.initramfs file) and its own configuration of busybox (in
the <project>.busybox file). These files are enough to rebuild both the project kernel and
the project file system (with a specific configuration of the busybox tool) from scratch.

If a project makes use of a custom application specific to the project, such an application
must be built from the sources located in an arbitrarily-named sub-directory local to the
project directory. There could be several sub-directories in a project, one per a custom
application. Each sub-directory will have its own Makefile defining rules for building the
custom application from the corresponding sources.

Each custom application listed in CUSTOM_APPS must have a Makefile in the custom
application sub-directory defining the following targets:

• all - build the application from the sources;

• clean - clean anything that has been previously built.

Content of the initramfs file system is defined for a project in the file named
<project>.initramfs. Note that this file makes use of ${INSTALL_ROOT} to provide a
reference to the top of the Vybrid installation directory.

7.2.2. initramfs Specification File Syntax Extensions

As described above, the initramfs specification files define the content of the target root file
system. Refer to linux/Documentation/filesystems/ramfs-rootfs-initramfs.txt for a
description of the initramfs spec file syntax.

The Vybrid software development environment extends the initramfs syntax with the
following statements:

• opkg – this statement includes all files belonging to a specified ELDK package to the
target file system. For example:

opkg libc6

• rm – this statement removes a specified file; this comes in handy if a file from a
previously included package is not needed in the target file system. For example:

rm /usr/share/udhcpc/default.script

• rmdir – this statement removes a specified directory with all its files and subdirectories.
For example:

rmdir /usr/share/udhcpc

• localdir – this statement adds a specified directory with all its files and subdirectories
to the target filesystem. For example:

localdir /home/app ${INSTALL_ROOT}/projects/${SAMPLE}/app

7.2.3. initramfs Specification File Helper Commands

The rfs-builder.py utility provides several commands that can be used to automate
editting of an initramfs specification file:

• The pkg-list command prints a list of all packages available from the ELDK SDK. For
example:

$ ${INSTALL_ROOT}/projects/rfs-builder.py pkg-list
acl - 2.2.51-r3
acl-dev - 2.2.51-r3
...

• The pkg-add command adds a specified package and all its dependencies to the
initramfs specification file. For example:

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 20/28 Release 1.12.2.1

$ ${INSTALL_ROOT}/projects/rfs-builder.py pkg-add networking.initramfs acl
Adding acl to networking.initramfs
Adding libacl1 to networking.initramfs as dependency of acl
libc6 (dependency of acl) already exists, skipping

• The pkg-rm command removes a specified package from the initramfs specification file
For example:

$ ${INSTALL_ROOT}/projects/rfs-builder.py pkg-add networking.initramfs acl
Adding acl to networking.initramfs
Adding libacl1 to networking.initramfs as dependency of acl
libc6 (dependency of acl) already exists, skipping

• The file-add command adds a specified file to the initramfs specification file. For
example:

$ ${INSTALL_ROOT}/projects/rfs-builder.py file-add networking.initramfs /sample_file
~/sample_file 0755 0 0
Adding file /sample_file to networking.initramfs

• The symlink-add command adds a specified symbolic link to the initramfs specification
file. For example:

$ ${INSTALL_ROOT}/projects/rfs-builder.py symlink-add networking.initramfs
/sample_file_link /sample_file 0755 0 0
Adding symlink /sample_file_link to networking.initramfs

• The nod-add command adds a specified device node to the initramfs specification file.
For example:

$ ${INSTALL_ROOT}/projects/rfs-builder.py nod-add networking.initramfs /dev/sample_nod
0755 0 0 c 255 255
Adding nod /dev/sample_nod to networking.initramfs

• The dir-add command adds a specified directory to the initramfs specification file. For
example:

$ ${INSTALL_ROOT}/projects/rfs-builder.py dir-add networking.initramfs /sample_dir 0755
0 0
Adding directory /sample_dir to networking.initramfs

• The file-rm command removes a specified file/symlink/device node from the
initramfs specification file. For example:

$ ${INSTALL_ROOT}/projects/rfs-builder.py file-rm networking.initramfs /dev/sample_nod
Adding removal of /dev/sample_nod to networking.initramfs

• The dir-rm command removes a specified directory from the initramfs specification
file. For example:

$ ${INSTALL_ROOT}/projects/rfs-builder.py dir-rm networking.initramfs /sample_dir
Adding removal of /sample_dir to networking.initramfs

• The localdir-add command adds an instruction to include to the initramfs image a
specified directory with all its files and subdirectories to the initramfs specification file.
For example:

$../rfs-builder.py localdir-add qtdemo.initramfs /home/app
\$\{INSTALL_ROOT\}/projects/\$\{SAMPLE\}/app
Adding local directory ${INSTALL_ROOT}/projects/${SAMPLE}/app with its content to
/home/app

Note that the file-rm and dir-rm commands do not remove the specified file or directory
from the initramfs specification file, but instead add an appropriate instruction so that the
file or directory will be removed during the root filesytem generation. This allows removal of
files and directories that are added by ELDK packages rather than created directly in the
initramfs file.

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 21/28 Release 1.12.2.1

7.2.4. Networking Demo Project

Resides in projects/networking.

Implements the functionality of the demo Linux/MQX configuration that comes pre-loaded on
the VF6-SOM kit. Please refer to Section 6 for a detailed description of the demo.

8. Software Development Workflow

8.1. Linux Development

8.1.1. Sample Linux Development Session

This sample session illustrates a recommended software development workflow using the
VF6 SOM kit and the Vybrid software development environment.

We will do the following:

1. Create a new project by cloning it off of the networking demo project.

2. Modify the new project to automatically NFS-mount a development tree from the Linux
development host.

3. Program the new project image into Flash so that it autoboots on the target on each
power-up / reset.

4. Develop a new custom application and a kernel module and debug them from the NFS-
mounted host directory, without having to even reboot the target.

8.1.2. Create a New Project

This section creates a new project as a clone of the existing project and makes sure the new
project builds:

1. Start off of the networking project and create a clone called my_networking:

-bash-3.2$ pwd
/home/vlad/test/linux-vf6-1.12.2.1/projects/networking
-bash-3.2$ make clone new=my_networking
New project created in /home/vlad/test/linux-vf6-1.12.2.1/projects/my_networking
-bash-3.2$

2. Go to the new project directory, build it and copy the downloadable Linux image to the
TFTP server directory:

-bash-3.2$ cd ../my_networking /
-bash-3.2$ make
...
 Image arch/arm/boot/uImage is ready
...
-bash-3.2$ cp my_networking.uImage /tftpboot/

8.1.3. Set Up Target for the New Project

This section sets up U-Boot for debugging of the new project on the target:

1. Reset the target and enter the U-Boot command monitor, hitting any key to stop the
autoboot:

...
Hit any key to stop autoboot: 0
Vybrid U-Boot >

2. Define the IP addresses for the target and a TFTP server; define the name of the image
to be downloaded by tftpboot:

Vybrid U-Boot > setenv ipaddr 172.17.44.46
Vybrid U-Boot > setenv serverip 172.17.0.1
Vybrid U-Boot > setenv image my_networking.uImage

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 22/28 Release 1.12.2.1

3. Check that U-Boot defines appropriate commands (macros) for booting the Linux image
from a TFTP server and running it on the target:

Vybrid U-Boot > printenv netboot
netboot=tftp ${image};run addip;bootm
Vybrid U-Boot > printenv addip
addip=setenv bootargs ${bootargs}
ip=${ipaddr}:${serverip}:${gatewayip}:${netmask}:${hostname}:eth0:off

4. Save the updated environment in Flash:

Vybrid U-Boot > saveenv
Saving Environment to qspi...
Vybrid U-Boot >

5. Boot the Linux image over the network and test that the networking is functional. Note
that given a correct ipaddr setting in U-Boot, the kernel brings up the Ethernet interface
in Linux automatically:

Vybrid U-Boot > run netboot
Using FEC0 device
TFTP from server 172.17.0.1; our IP address is 172.17.44.46
Filename 'my_networking.uImage'.
Load address: 0x80007fc0
Loading: ###
 ###
 ###
 ##############
done
Bytes transferred = 3057956 (2ea924 hex)
Booting kernel from Legacy Image at 80007fc0 ...
 Image Name: Linux-3.0.15-linux-vf6-1.12.2.1
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 3057892 Bytes = 2.9 MiB
 Load Address: 80008000
 Entry Point: 80008000
 XIP Kernel Image ... OK
OK

Starting kernel ...

Linux version 3.0.15-vf6-1.12.2.1 (psl@ocean.emcraft.com) (gcc version 4.7.2 (GCC)) #10
Mon Oct 13 17:54:32 MSK 2014
CPU: ARMv7 Processor [410fc051] revision 1 (ARMv7), cr=10c53c7d
...

Freeing init memory: 3408K
init started: BusyBox v1.17.0 (2014-06-03 16:33:34 MSK)
eth0: Freescale FEC PHY driver [Micrel KS8051] (mii_bus:phy_addr=1:00, irq=-1)
Loading /cmsis_example.bin to 0x3f400000 ...
Loaded 65624 bytes. Booting at 0x3f404081... done

8.1.4. Update the New Project

This section updates the new project for the required functionality and validates it on the
target:

1. In the new project, update the target start-up script so that it automatically mounts the
projects directory from the Linux Cortex-M installation on the development host. This
makes all projects immediately available on the target allowing you to edit, build and
test your sample applications and loadable device drivers without having to re-Flash or
even reboot the target:

-bash-3.2$ vi local/rc
#!/bin/sh
mount -t proc proc /proc
mount -t sysfs sysfs /sys
mount -t devpts none /dev/pts
mkdir /mnt
mount -o nolock,rsize=1024 172.17.0.1:/home/vlad/test/linux-vf6-1.12.2.1/projects /mnt
ifconfig lo 127.0.0.1

2. Build the updated project and copy it to the TFTP server directory:

-bash-3.2$ make; cp my_networking.uImage /tftpboot/
...

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 23/28 Release 1.12.2.1

3. Reboot the target, load the updated image over the network and test it:

~ # reboot -f
Restarting system.

...
Hit any key to stop autoboot: 0
Vybrid U-Boot > run netboot
...
init started: BusyBox v1.17.0 (2014-06-06 19:58:44 MSK)
~ # mount
rootfs on / type rootfs (rw)
proc on /proc type proc (rw,relatime)
sysfs on /sys type sysfs (rw,relatime)
none on /dev/pts type devpts (rw,relatime,mode=600,ptmxmode=000)
172.17.0.1:/home/vlad/test/linux-vf6-1.12.2.1/projects on /mnt type nfs
(rw,relatime,vers=3,rsize=1024,wsize=32768,namlen=255,hard,nolock,proto=udp,port=65535,t
imeo=7,retrans=3,sec=sys,mountport=65535,mountproto=,addr=172.17.0.1)
~ # ls -lt /mnt
drwxr-xr-x 4 19270 19270 4096 Mar 25 2011 my_networking
drwxr-xr-x 4 19270 19270 4096 Mar 25 2011 networking
-rw-r--r-- 1 19270 19270 3581 Mar 25 2011 Rules.make
-rwxr-xr-x 1 19270 19270 14485 Mar 25 2011 rfs-builder.py
~ #

8.1.5. Install the New Project to Flash

This section installs the new project to Flash so that it automatically boots up on the target
on any power-up / reset:

1. At the U-Boot prompt, load the Linux image into the target RAM over TFTP and program
it to Flash:

Vybrid U-Boot > print image
image=my_networking.uImage
Vybrid U-Boot > run update
Using FEC0 device
TFTP from server 172.17.0.1; our IP address is 172.17.44.46
Filename 'psl/vy/networking.uImage'.
Load address: 0x80007fc0
Loading: ###
 ###
 ###
 ##############
done
Bytes transferred = 3059448 (2eaef8 hex)
Saving Environment to qspi...
Vybrid U-Boot >

2. Reset the board and make sure that the new project boots from Flash in the autoboot
mode:

Vybrid U-Boot > reset
resetting ...
...
Hit any key to stop autoboot: 0
Booting kernel from Legacy Image at 80007fc0 ...
...
init started: BusyBox v1.17.0 (2014-06-06 19:58:44 MSK)
~ # ls -lt /mnt
drwxr-xr-x 4 19270 19270 4096 Mar 25 2011 my_networking
...
~ #

8.1.6. Develop a Custom Loadable Device Driver over NFS

1. Go to the application sub-directory in your project's directory:

-bash-3.2$ cd app/
-bash-3.2$ pwd
/home/vlad/test/linux-vf6-1.12.2.1/projects/my_networking/app

2. The networking project you have cloned your new project off already provides a
loadable kernel device driver implemented in sample.c. The device driver allows reading
"device data" from a pseudo-device, which keeps its data in a character array defined in
sample.c. Let's enhance the device driver to allow changing the "device data" by writing
into the character array. Note that, this being a simple example of a development

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 24/28 Release 1.12.2.1

session, the code below assumes that the user-supplied "device-data" does not exceed
1023 bytes.

-bash-3.2$ vi sample.c
...
/*
 * Device "data"
 */
static char sample_str[1024] = "This is the simplest loadable kernel module\n";
...
/*
 * Device write
 */
static ssize_t sample_write(struct file *filp, const char *buffer,
 size_t length, loff_t * offset)
{
 int ret = 0;

 /*
 * Check that the user has supplied a valid buffer
 */
 if (! access_ok(0, buffer, length)) {
 ret = -EINVAL;
 goto Done;
 }

 /*
 * Write the user-supplied string into the sample "device string".
 */
 strncpy(sample_str, buffer, length);
 sample_str[length] = '\0';
 *offset += length + 1;
 ret = length;

Done:
 d_printk(3, "length=%d\n", length);
 return ret;
}

3. Build the updated device driver:

-bash-3.2$ make

4. On the target, go to the application directory:

/mnt/my_networking/app # cd /mnt/my_networking/app/

5. Install the updated device driver to the kernel:

/mnt/my_networking/app # insmod sample.ko

6. Test that the read operation returns the content of the built-in "device data":

/mnt/my_networking/app # cat /dev/sample
This is the simplest loadable kernel module

7. Write into /dev/sample in order to change the "device data" and test the device returns
the updated data on a next read:

/mnt/my_networking/app # cat > /dev/sample
This is the new content of /dev/sample
^D
/mnt/my_networking/app # cat /dev/sample
This is the new content of /dev/sample

8. Unload the device driver:

/mnt/my_networking/app # rmmod sample

9. Iterate to update and test your custom device driver from the NFS-mounted host
directory.

8.1.7. Develop a Custom User-Space Application over NFS

1. You are in the application sub-directory in your project's directory:

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 25/28 Release 1.12.2.1

-bash-3.2$ pwd
/home/vlad/test/linux-vf6-1.12.2.1/projects/my_networking/app

2. The networking project you have cloned your new project off already provides a user-
space application implemented in app.c. Let's add a simple print-out to the application
code:

-bash-3.2$ vi app.c
...
 printf("%s: THIS IS CONTENT OF %s:\n", app_name, dev_name);

 /*
 * Read the sample device byte-by-byte
 */
 while (1) {
...

3. Build the updated application:

-bash-3.2$ make

4. On the target, install the device driver and test the updated application:

/mnt/my_networking/app # insmod sample.ko
/mnt/my_networking/app # ./app
./app: THIS IS CONTENT OF /dev/sample:
This is the simplest loadable kernel module

5. Unload the device driver:

/mnt/my_networking/app # rmmod sample

6. Iterate to update and test your custom application from the NFS-mounted host directory.

8.2. MQX Development

8.2.1. Cortex-M4 GNU Toolchain

The Cortex-M4 MQX BSP and application code is developed using the Linux-based GNU
toolchain. This allows using a single Linux development host for development of both the
Cortex-A5 and Cortex-M4 processor cores.

Refer to Section 7.1.3 for detailed information on how the Cortex-M4 GNU toolchain is
installed to the development host.

8.2.2. MQX BSP Source Tree

In the Vybrid software development environment, the MQX BSP source tree resides in the
target/mqx-4.0/ sub-directory, relative to the installation. The same sub-directory provides
the source files of the Cortex-M4 MCC (Mutli-Core Communication) component.

The MQX BSP configuration is defined by the following file:
target/mqx-4.0/config/emcraft_vf6som_m4/user_config.h. Edit that file in case you
need to change the MQX BSP configuration.

8.2.3. MQX Build

The networking demo project (refer to Section 7.2.4) illustrates how the MQX BSP and a
sample MQX application are built on the Linux development host. Let's take a look at how
this is done.

The projects/networking/mcc sub-directory contains all Cortex-M4 application code
required in the demo. Take a look at the Makefile in that directory to see how the project
build goes to the MQX source tree in target/mqx-4.0/ to build the MQX BSP and the MQX
MCC libraries.

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 26/28 Release 1.12.2.1

The Cortex-M4 application code used by the demo resides in the cmsis/ and libcmsis/ sub-
directories, relative to projects/networking/mcc. The above Makefile goes to these
subdirectories to build the application components for Cortex-M4.

As the final step in the MQX build sequence, the Makefile links all Cortex-M4 components
(MQX BSP library, MQX MCC library, demo application) into a Cortex-M4 executable binary
(cmsis_example.bin). The demo root file system specification file
(projects/networking/networking.initramfs) copies the binary to the Linux target file
system.

8.2.4. Run-Time Load of MQX

On the target, an MQX executable binary is loaded and started on the Cortex-M4 processor
core using the Linux mqxboot utility. For example, the following command loads onto the
Cortex-M4 the cmsis_example.bin MQX binary:

~ # /mqxboot /cmsis_example.bin 0x3f000000 0x3f0043ad
Loading /cmsis_example_emcraft_vf6som_m4.bin to 0x3f000000 ...
Loaded 39772 bytes. Booting at 0x3f000485... done

Alternatively, the MQX image can be loaded and started from U-boot. For this, the MQX
binary must be encapsulated into a uImage image (in the networking sample project this is
automatically done during build process in mcc/Makefile). The uImage must then be loaded
to RAM and booted using the boot_cm4 U-boot command, e.g.:

Vybrid U-Boot > tftpboot mqx.uImage
Using FEC0 device
TFTP from server 172.17.0.1; our IP address is 172.17.44.46
Filename 'mqx.uImage'.
Load address: 0x80007fc0
Loading: #####
done
Bytes transferred = 66120 (10248 hex)
Vybrid U-Boot > boot_cm4 ${loadaddr}
Booting MQX from Legacy Image at 80007fc0 ...
 Image Name: MQX
 Image Type: ARM U-Boot Firmware (uncompressed)
 Data Size: 66056 Bytes = 64.5 KiB
 Load Address: 3f400000
 Entry Point: 3f4043ad
Vybrid U-Boot >

8.3. U-Boot Development

8.3.1. U-Boot Build

The Vybrid software distribution provides a full tree of the U-Boot source files. This allows
you to configure or otherwise enhance U-Boot for your specific needs.

To build U-Boot, do the following on your Linux development host (refer to Section 7):

1. Go to the software installation and activate the cross development environment (unless
you have activated it already):

[psl@ocean linux-vf6-1.12.2.1]$. ACTIVATE.sh
Setup for armv7a (using ELDK 5.3-vybrid)
[psl@ocean linux-vf6-1.12.2.1]$

2. Go to the top of the U-Boot source tree:

[psl@ocean linux-cortexm-1.12.2.1]$ cd u-boot/
[psl@ocean u-boot]$

3. Configure U-Boot for the VF6 SOM:

[psl@ocean u-boot]$ make vybrid_som_config
Generating include/autoconf.mk
Generating include/autoconf.mk.dep

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 27/28 Release 1.12.2.1

Configuring for vybrid_som - vybrid_som_2a, Options:
SYS_TEXT_BASE=0x3F000800,IMX_CONFIG=board/emcraft/vybrid_som/vybridimage.cfg
[psl@ocean u-boot]

4. Build the U-Boot image and copy it to the TFTP server directory:

[psl@ocean u-boot]$ LDFLAGS="" make -j9 -s u-boot.flash

Image Type: Freescale IMX Boot Image
Image Ver: 2 (i.MX53/6 compatible)
Data Size: 161128 Bytes = 157.35 kB = 0.15 MB
Load Address: 3f000420
Entry Point: 3f000800
[psl@ocean u-boot]$ cp u-boot.flash /tftpboot/

8.3.2. U-Boot Self-Upgrade

To upgrade U-Boot on the VF6-SOM, do the following on the target:

1. Download the U-Boot image from the TFTP server:

Vybrid U-Boot > tftp u-boot.flash
Using FEC0 device
TFTP from server 172.17.0.1; our IP address is 172.17.44.46
Filename 'u-boot.flash'.
Load address: 0x80007fc0
Loading: ###########
done
Bytes transferred = 160544 (27320 hex)
Vybrid U-Boot >

2. Program the new U-Boot image to the external Flash of the VF6 SOM.

a) If the NAND Flash is used as the boot device, the following command must be used:

Vybrid U-Boot > nand erase 60000 80000 && nand write ${loadaddr} 60000 ${filesize}
Vybrid U-Boot >

b) If the QSPI Flash is used as the boot device, the following command must be used:

Vybrid U-Boot > qspi erase 0 40000 && qspi write ${loadaddr} 0 ${filesize}
Vybrid U-Boot >

3. Reset the target and make sure that the new U-Boot comes up on the VF6-SOM:

Vybrid U-Boot > reset
resetting ...

CPU: Freescale VyBrid 600 family rev1.1 at 498 MHz
Board: VF6-SOM Rev 2.a, www.emcraft.com
DDR controller is initialized
DRAM: 512 MiB
NAND: 1024 MiB
MMC: FSL_SDHC: 0
Bad block table found at page 524224, version 0x01
Bad block table found at page 524160, version 0x01
nand_read_bbt: Bad block at 0x00000d340000
In: serial
Out: serial
Err: serial
Net: FEC0
Vybrid U-Boot >

Note: Be extra-careful when performing the upgrade sequence specified above. In case you
program an incorrect U-Boot image to the external Flash, this will render the board non-
bootable. The only resort in this scenario is to program the U-boot image to the board over
the JTAG port.

9. Support

We appreciate your review of our product and welcome any and all feedback. Comments can
be sent directly by email to:

Emcraft Systems

Vybrid VF6 SOM Starter Kit Guide 28/28 Release 1.12.2.1

a2f-linux-support@emcraft.com

The following level of support is included with your purchase of this product:

• Email support for installation, configuration and basic use scenarios of the product during
3 months since the product purchase;

• Free upgrade to new releases of the downloadable materials included in the product
during 3 months since the product purchase.

If you require support beyond of what is described above, we will be happy to provide it
using resources of our contract development team. Please contact us for details.

mailto:a2f-linux-support@emcraft.com�

	Vybrid VF6 SOM Starter Kit Guide
	Table of Contents
	1. Overview
	2. Product Contents
	2.1. Shippable Hardware Items
	2.2. Downloadable Hardware Materials
	2.3. Downloadable Software Materials
	2.4. Downloadable Documentation Materials

	3. Software Functionality
	3.1. Supported Features
	3.2. New and Changed Features
	3.3. Known Problems & Limitations

	4. Hardware Setup
	4.1. Standalone Operation
	4.1.1. Hardware Interfaces
	4.1.2. TWR-VF6-SOM-BSB Jumpers

	4.2. Operation in Freescale Tower
	4.3. Extension Interfaces

	5. VF6 SOM Board Linux Software Set-up
	5.1. Boot Device Configuration
	5.2. Migration of Boot Images to NAND Flash
	5.3. U-Boot Environment
	5.4. Ethernet MAC Address
	5.5. Network Configuration
	5.6. Autoboot
	5.7. Running Pre-installed Linux Image

	6. Pre-loaded Linux Image
	7. Software Development Environment
	7.1. Distribution and Installation
	7.1.1. Distribution Image
	7.1.2. ELDK Cortex-A5 Toolchain and SDK
	7.1.3. Cortex-M4 Toolchain
	7.1.4. Installation Tree
	7.1.5. Activation
	7.1.6. Dependency on Host Components

	7.2. Projects Framework
	7.2.1. Multiple Target Projects
	7.2.2. initramfs Specification File Syntax Extensions
	7.2.3. initramfs Specification File Helper Commands
	7.2.4. Networking Demo Project

	8. Software Development Workflow
	8.1. Linux Development
	8.1.1. Sample Linux Development Session
	8.1.2. Create a New Project
	8.1.3. Set Up Target for the New Project
	8.1.4. Update the New Project
	8.1.5. Install the New Project to Flash
	8.1.6. Develop a Custom Loadable Device Driver over NFS
	8.1.7. Develop a Custom User-Space Application over NFS

	8.2. MQX Development
	8.2.1. Cortex-M4 GNU Toolchain
	8.2.2. MQX BSP Source Tree
	8.2.3. MQX Build
	8.2.4. Run-Time Load of MQX

	8.3. U-Boot Development
	8.3.1. U-Boot Build
	8.3.2. U-Boot Self-Upgrade

	9. Support

