Develop Linux CAN device
driver in the Linux .MX BSPs

Detailed Requirements and

Design

Emcraft Systems Confidential

rm6798-drad-1_3.doc

RM:

6798

1.3

Date:

9/4/2024

Develop Linux CAN device driver in the Linux i.MX BSPs Emcraft Systems Confidential

TABLE OF CONTENTS

1. OVERVIEW
2. REQUIREMENTS
2.1. Detailed REGUITEIMENTSoo.eiiieiiiiiieii ettt ettt et e st ettt e e s seesbeesbeebeeneeeaeeeae
2.2. Detailed NON-REQUITEIMENLSeeovieriiieiieriieite et eteettesteeteebeesseeaesseesseesseesseessesssesseesseesseessesssesseesses
3. DESIGN
3.1. DEtailed DESIZN ... eeviiuiiiiieiieiiecieie et eteste sttt et e et eetteete e beesbeesbeessesseesseebeesseasseasseessenseenseenseensesreenees
3.1.1. DESIGN: DO PFOJECT ...ttt et ettt ettt ettt ettt ettt e n
3.1.2. Design: Linux CAN DeViCe DFIVeF.............ccccciiiiuieiiieiiiese sttt ettt neae s
3.1.3. DESIGI: CANSOCKEL ..ottt ettt ettt ettt et et e et e sseense s e
3.14. Design: CANSOCKEt TESE SUILEc..ooueviiiiiiiiiiiiieiie ettt
3.2 Effect on Related ProdUCES........c.ooiieiiee ettt
3.3. Changes to User DOCUMENTALIONccuirtiririiririeieieiene sttt sttt nee
3.4. AICINAtIVE DIESIZI ...ttt ettt ettt et e bt et ea e eseeeb e e s bt e bt eteeneeeneeeaeenteeneens
4. TEST PLAN
4.1. Secure DOWNIOAA ATCa.....cueiiiiiieii ettt ettt ettt sa ettt et e et e e s eesbeesbe e bt eeeeneeeaes
4.2. DOWNIOAAADIE FILES.......eueiiiiiitieiieee ettt ettt st ettt et e e bbbt et et e e e
43 TSt SEEUD 1ntieeiiieeiie ettt ettt ettt e et e st e e e bt e s et e e eabeesabaeasaeeasb e e saeeasbaenaeeasbeeanaeeasbeenseeesaeennaen

4.3.1. Hardware Setup
4.3.2. Software Setup

4.4. Detailed TeSt PIANccviiiiiiiiiicee ettt et e et e eae e tr e e s tbeeetseesaseetaeeeaaeeaee s
4.4.1. Test Plan: DEmo PrOJECE...........c..ccccooiiiiiiiieiiiiii ittt ettt
4.4.2. Test Plan: Linux CAN DFIVETcooouiieeeiie ettt
4.4.3. TSt PIAN: CANSOCKEE ..ot

4.4.4. Test Plan: CANSOCKEt TSt SUILE.cccoueeeiiieiieeeee ettt

Develop Linux CAN device driver in the Linux i.MX BSPs Emcraft Systems Confidential

1. Overview

This project develops Linux CAN device driver in the Linux BSP for the i.MX RT processor.

2. Requirements
2.1. Detailed Requirements
The following are the requirements for this project:

1. Provide a Linux demo project combining all the requirements in this project.

o Rationale: Needed to let Customer integrate results of this project into target embedded
application.
Implementation: Section: "Design: Demo project".
Test: Section: "Test Plan: Demo Project".

2. Develop Linux CAN device driver for the . MX RT CAN controller.

o Rationale: Explicit Customer requirement.
Implementation: Section: "Design: Linux CAN Device Driver".
Test: Section: "Test Plan: Linux CAN Driver".

3. Port CANSocket to the Linux i.MX RT BSP.

o Rationale: Explicit Customer requirement.
Implementation: Section: "Design: CANSocket".
Test: Section: "Test Plan: CANSocket".

4. Validate successful execution of the test suite from the SocketCAN package.

o Rationale: Explicit Customer requirement.
Implementation: Section: "Design: CANSocket Test Suite".
Test: Section: "Test Plan: CANSocket Test Suite".

2.2. Detailed Non-Requirements
The following are the non-requirements for this project that may otherwise not be obvious:
1. None

3. Design

3.1. Detailed Design

3.1.1. Design: Demo project

This project will enable the required CAN functionality in Linux configuration ("embedded project") called
rootfs, which resides in a projects/rootfs directory, relative to the top of the Linux i.MX RT installation.

RM#: 6798 3111 Revision: 1.3, 9/4/2024

Develop Linux CAN device driver in the Linux i.MX BSPs Emcraft Systems Confidential

3.1.2. Design: Linux CAN Device Driver

The internal i.MX clocks necessary for the CAN interface will be enabled in the kernel. The i.MX RT f1excan
interface network driver 1inux/drivers/net/can/flexcan.c will be enabled, and the respective changes will be
added to the kernel .dts file.

The f1excan functionality will be enabled in the Linux kernel configuration as follows:

° Go to Networking support - CAN bus subsystem support -> CAN Device Drivers

e Enable Platform CAN drivers with Netlink support (CONFIG_CAN DEV) and
Support for Freescale FLEXCAN based chips (CONFIG CAN FLEXCAN)

3.1.3. Design: CANSocket

The CAN socket API, described in details in 1inux/Documentation/networking/can.txt, will be enabled using
the Raw CAN Protocol (raw access with CAN-ID filtering) and

Broadcast Manager CAN Protocol (with content filtering) configuration options in the

Networking support -> CAN bus subsystem support configuration menu.

3.1.4. Design: CANSocket Test Suite

The can-utils and can-tests packages will be used for verification of the functionality implemented in this
project.

3.2. Effect on Related Products

This project makes the following updates in the related products:
e None

3.3. Changes to User Documentation

This project updates the following user documents:
e None

3.4. Alternative Design

The following alternative design approaches were considered by this project but then discarded for some reason:
e None

4. TestPlan

4.1. Secure Download Area

The downloadable materials developed by this project are available from a secure Web page on the Emcraft
Systems web site. Specifically, proceed to the following URL to download the software materials:

RM#: 6798 4/11 Revision: 1.3, 9/4/2024

Develop Linux CAN device driver in the Linux i.MX BSPs Emcraft Systems Confidential

for the .MX RT1024 BSP release:
e https://www.emcraft.com/imxrtaddon/imxrt1024/can
The page is protected as follows:

e Login: CONTACT EMCRAFT

e Password: cONTACT EMCRAFT
for the i.MX RT1050 BSP release:

e https://www.emcraft.com/imxrtaddon/imxrt1050/can
The page is protected as follows:

o Login: CONTACT EMCRAFT

e Password: CONTACT EMCRAFT
for the .MX RT1170 BSP release:

e https://www.emcraft.com/imxrtaddon/imxrt1170/can
The page is protected as follows:

e Login: CONTACT EMCRAFT

° Password: cONTACT EMCRAFT

4.2. Downloadable Files
The following files are available from the secure download area:

® linux-flexcan.patch - patch to the Linux kernel sources;
® projects-flexcan.patch - patch to the root£s project;

® rootfs.uImage - prebuilt bootable Linux image;
Refer to the below sections for the instructions on how to install and use these files.

4.3. Test Set-Up
4.3.1. Hardware Setup

The following hardware setup is required for the . MX RT1024 boards:

e The i.MX RT1024 EVK board, with the serial console attached as per https://emcraft.com/imxrt1024-
evk-board/connecting-serial-console-to-imxrt1024-evk.

e A Linux PC with the vscom uss-can USB to CAN Adapter http://www.vscom.de/vscom-usb-can.html
plugged into a USB port on the PC, and the following connections to the i.MX RT1024 EVK board:

o bB9.2 of USB-CAN connected to cant J10.3 on the .MX RT EVK board.
o bpB9.7 of USB-CAN connected to cana J10.1 on the .MX RT EVK board.
o DB9.3 of USB-CAN connected to oD J10.2 on the i.MX RT EVK board.

RM#: 6798 5/11 Revision: 1.3, 9/4/2024

https://www.emcraft.com/imxrtaddon/imxrt1024/can
https://www.emcraft.com/imxrtaddon/imxrt1050/can
https://www.emcraft.com/imxrtaddon/imxrt1170/can
https://emcraft.com/imxrt1024-evk-board/connecting-serial-console-to-imxrt1024-evk
https://emcraft.com/imxrt1024-evk-board/connecting-serial-console-to-imxrt1024-evk
http://www.vscom.de/vscom-usb-can.html

Develop Linux CAN device driver in the Linux i.MX BSPs Emcraft Systems Confidential

for the 1. MX RT1050 boards:

e The i.MX RT1050 EVK board, with the serial console attached as per https://emcraft.com/imxrt1050-
evk-board/connecting-serial-console-to-imxrt1050-evk.

e A Linux PC with the vscom use-can USB to CAN Adapter http://www.vscom.de/vscom-usb-can.html
plugged into a USB port on the PC, and the following connections to the i.MX RT1050 EVK board:

o pB9.2 of USB-CAN connected to cant J11.3 on the .MX RT EVK board.
o pB9.7 of USB-CAN connected to canu J11.1 on the iMX RT EVK board.
o pB9.3 of USB-CAN connected to enp J11.2 on the i.MX RT EVK board.

for the 1.MX RT1170 boards:

e Thei.MX RT1170 EVK board, with the serial console attached as per https://emcraft.com/imxrt1170-
evk-board/connecting-serial-console-to-imxrt1170-evk.

e A Linux PC with the vscom use-can USB to CAN Adapter http://www.vscom.de/vscom-usb-can.html
plugged into a USB port on the PC, and the following connections to the i.MX RT1170 EVK board:

o bB9.2 of USB-CAN connected to cant J47.3 on the .MX RT EVK board.
o pB9.7 of USB-CAN connected to canu J47.1 on the iMX RT EVK board.
o pB9.3 of USB-CAN connected to eND J47.2 on the i.MX RT EVK board.

4.3.2. Software Setup
The following software setup is required:

1. Download the files listed in Section: "Downloadable Files" to the top of the Linux i.MX RT installation.

2. Install the BSP, as per the respective "Installing and activating cross development environment"
document in the "Software" section on the Emcraft site.
3. From the top of the Linux installation, activate the Linux cross-compile environment by running:

$. ./ACTIVATE.sh

4. Install U-Boot to the target board.

o for the IMXRT1050-EVK boards as per https://emcraft.com/imxrt1050-evk-board/installing-
uboot-to-imxrt1050-evk-board

o for the IMXRT1170-EVK boards as per https://emcraft.com/imxrt1170-evk-board/installing-
uboot-to-imxrtl 170-evk-board

5. From the top of the BSP installation, go to the Linux kernel tree and install the kernel patch, eg:

cd linux/
patch -pl < ../../linux-flexcan.patch

wr

6. From the top of the Linux installation, go to the projects sub-directory, and patch the root fs project:

$ cd projects/
$ patch -pl < ../../projects-flexcan.patch

7. On the Linux PC intended for execution of the CANsocket test suite, ensure that the following software
is installed (Emcraft used Linux PC running the Fedora 16 (3.1.0-7.fc16.1686.PAE) installation; the
other Linux distributives should work too, but may require some additional steps like compilation and
installation of the CAN framework kernel modules):

1. Install can-utils package on the Linux PC (commands below are for a Fedora host):

$ sudo yum install can-utils

RM#: 6798 6/11 Revision: 1.3, 9/4/2024

https://emcraft.com/imxrt1050-evk-board/connecting-serial-console-to-imxrt1050-evk
https://emcraft.com/imxrt1050-evk-board/connecting-serial-console-to-imxrt1050-evk
http://www.vscom.de/vscom-usb-can.html
https://emcraft.com/imxrt1170-evk-board/connecting-serial-console-to-imxrt1170-evk
https://emcraft.com/imxrt1170-evk-board/connecting-serial-console-to-imxrt1170-evk
http://www.vscom.de/vscom-usb-can.html
https://emcraft.com/imxrt1050-evk-board/installing-uboot-to-imxrt1050-evk-board
https://emcraft.com/imxrt1050-evk-board/installing-uboot-to-imxrt1050-evk-board
https://emcraft.com/imxrt1170-evk-board/installing-uboot-to-imxrt1170-evk-board
https://emcraft.com/imxrt1170-evk-board/installing-uboot-to-imxrt1170-evk-board

Develop Linux CAN device driver in the Linux i.MX BSPs Emcraft Systems Confidential

2. Install and build can-tests on the Linux PC:

el

git clone https://github.com/linux-can/can-tests.git
cd can-tests

make

sudo DESTDIR=/usr PREFIX= make install

0 W »n v »n

3. Load the CAN kernel modules on the Linux PC:

$ sudo modprobe can
$ sudo modprobe can-raw
$ sudo modprobe slcan

8. Connect the VSCOM USB-CAN adapter to the Linux PC and configure it as follows:
0. Getthe VSCOM USB-CAN serial device name (in the example below it is ttyusBo0):

$ dmesg | tail

[77641.738206] usbcore: registered new interface driver ftdi sio

[77641.739086] usbserial: USB Serial support registered for FTDI USB Serial Device
[77641.747063] ftdi_sio 1-2:1.0: FTDI USB Serial Device converter detected
[77641.747348] usb 1-2: Detected FT232R

[77641.781982] usb 1-2: FTDI USB Serial Device converter now attached to ttyUSBO
[78603.073189] can: controller area network core

[78603.073360] NET: Registered PF CAN protocol family

[78618.877319] can: raw protocol

[78632.316446] CAN device driver interface

[78632.334423] slcan: serial line CAN interface driver

1. Configure the VSCOM USB-CAN adapter to run with a 1Mbps CAN-bus speed (the -s8
parameter in slcan attach), enable the corresponding network interface:
$ sudo slcan attach -o -s8 /dev/ttyUSBO
attached tty /dev/ttyUSBO to netdevice can0

$ sudo slcand -o -s8 -t hw -S 3000000 /dev/ttyUSBO
$ sudo ifconfig can0 up

2. If you have disconnected the VSCOM USB-CAN adapter from the Linux PC, before
reconnecting it back run the following command:

$ sudo killall slcand

4.4. Detailed Test Plan
4.4.1. Test Plan: Demo Project

Perform the following step-wise test procedure:

1. Go to the projects/rootfs directory, build the loadable Linux image (rootfs.uImage) and copy it to
the TFTP directory on the host:

$ cd projects/rootfs
$ make

2. Boot the loadable Linux image (rootfs.uImage) to the target via TFTP and validate that it boots to the
Linux shell:

=> run netboot

RM#: 6798 7/11 Revision: 1.3, 9/4/2024

Develop Linux CAN device driver in the Linux i.MX BSPs Emcraft Systems Confidential

TFTP from server 192.168.1.96; our IP address is 192.168.1.86

Filename 'imxrt/rootfs.ulmage'.

Load address: 0x80007£fcO

Loading: #######4##4#44HH#4HHHHHHHHHHHFHHHFHHHARHHRHHHSFHAFEHHARSHRAHHSHSSSE
B

/ #

4.4.2. TestPlan: Linux CAN Driver

Perform the following step-wise test procedure:
1. In the kernel bootstrap messages, validate that the CAN driver has been successfully installed and

activated:

/ # dmesg | grep -i can

CAN device driver interface

can: controller area network core

NET: Registered PF CAN protocol family

can: raw protocol

can: broadcast manager protocol

can: netlink gateway - max hops=1

/ #

4.4.3. TestPlan: CANSocket
Perform the following step-wise test procedure:

1. On the target, configure the CAN network:

/ # ip link set can0O type can bitrate 1000000
/ # ifconfig can0 up

2. Test target to Linux PC transfers:
o Run the capture utility on the Linux PC:

$ candump can0

o Send packets from the target to the host:

/ # cansend canO 12345678#99.AA.BB.CC.DD.EE.FF.00
/ # cansend can0O 12345678#99.AA.BB.CC.DD.EE.FF.01
/ # cansend can0O 12345678#99.AA.BB.CC.DD.EE.FF.02
/ # cansend canO 12345678#99.AA.BB.CC.DD.EE.FF.03
o Validate that the packets have been captured on the Linux PC:
can0 12345678 [8] 99 AA BB CC DD EE FF 00
can0 12345678 [8] 99 AA BB CC DD EE FF 01
can0 12345678 [8] 99 AA BB CC DD EE FF 02
can0 12345678 [8] 99 AA BB CC DD EE FF 03
o On the host, stop the capture utility by pressing ctri-c:
@
$

3. Test Linux PC to target transfers:
o Run the capture utility on the target:

RM#: 6798 8/11 Revision: 1.3, 9/4/2024

Develop Linux CAN device driver in the Linux i.MX BSPs Emcraft Systems Confidential

/ # candump can0

o Send packets from the Linux PC to the target:

cansend canO 123abcde#11.22.33.44.56.78.90.01
cansend canO 123abcde#11.22.33.44.56.78.90.03
cansend canO 123abcde#11.22.33.44.56.78.90.05
cansend canO 123abcde#11.22.33.44.56.78.90.07

wr

o Validate that the packets have been captured on the target:

can0 123ABCDE [8] 11 22 33 44 56 78 90 01
can0 123ABCDE [8] 11 22 33 44 56 78 90 03
can0 123ABCDE [8] 11 22 33 44 56 78 90 05
can0 123ABCDE [8] 11 22 33 44 56 78 90 07

o On the target, stop the capture utility by pressing ctri-c:

~C
/ #

4.4.4. TestPlan: CANSocket Test Suite
Perform the following step-wise test procedure:

1. Run the tst-raw Linux PC to target test:
o On the target:

/ # tst-raw —-i can0

o On the Linux PC:

$ sudo tst-raw-sendto -i can0

o Observe the test data on the target, then press ctri1-c and complete the test:
123 [3] 11 22 33
2@
/ #

2. Runthe tst-raw target to Linux PC test:
o On the Linux PC:

$ sudo tst-raw -i can0

o On the target:

/ # tst-raw-sendto -i can0

o Observe test data on the Linux PC, then press ctr1-c and complete the test:

123 [3] 11 22 33
A¢
$
3. Run the tst-packet Linux PC to target test:

o On the target:

RM#: 6798 9/11 Revision: 1.3, 9/4/2024

Develop Linux CAN device driver in the Linux i.MX BSPs Emcraft Systems Confidential

/ # tst-packet -i can0

o On the Linux PC send a packet, then press ctri-c and complete the test:
$ sudo tst-packet -i can0 -s
@
$

o Observe the test packet on the target, then press ctr1-c and complete the test:
123 [2] 11 22
A¢
/ #

4. Run the tst-packet target to Linux PC test:
o On the Linux PC:

$ sudo tst-packet -i can0

o On the target, send a packet, then press ctr1-c and complete the test:
/ # tst-packet -i can0 -s
~C
/ #

o Observe the test packet on the Linux PC, then press ctr1-c and complete the test:
123 [2] 11 22
A¢
$

5. Runthe tst-filter test on the target:

/ # tst-filter can0

testcase 0 filters : can id = 0x00000123 can mask = 0x000007FF
testcase 0 sending patterns ... ok

testcase 0 rx : can id = 0x00000123 rx = 1 rxbits =1

testcase 0 rx : can id = 0x40000123 rx = 2 rxbits = 17
testcase 0 rx : can id = 0x80000123 rx = 3 rxbits = 273
testcase 0 rx : can id = 0xC0000123 rx = 4 rxbits = 4369
testcase 0 ok

testcase 1 filters : can_id = 0x80000123 can mask = 0x000007FF
testcase 1 sending patterns ... ok

testcase 1 rx : can id = 0x00000123 rx = 1 rxbits =1

testcase 1 rx : can id = 0x40000123 rx = 2 rxbits = 17
testcase 1 rx : can_id = 0x80000123 rx = 3 rxbits = 273
testcase 1 rx : can id = 0xC0000123 rx = 4 rxbits = 4369
testcase 1 ok

testcase 2 filters : can_id = 0x40000123 can mask = 0x000007FF
testcase 2 sending patterns ... ok

testcase 2 rx : can id = 0x00000123 rx = 1 rxbits =1

testcase 2 rx : can id = 0x40000123 rx = 2 rxbits = 17
testcase 2 rx : can_id = 0x80000123 rx = 3 rxbits = 273
testcase 2 rx : can id = 0xC0000123 rx = 4 rxbits = 4369
testcase 2 ok

Loo02

testcase 15 filters : can_id = 0xC0000123 can _mask = 0xCOO007FF
testcase 15 sending patterns ... ok

testcase 15 rx : can_id = 0xC0000123 rx = 1 rxbits = 4096
testcase 15 ok

testcase 16 filters : can_id = 0x00000123 can mask = OxDFFFFFFF
testcase 16 sending patterns ... ok

testcase 16 rx : can _id = 0x00000123 rx = 1 rxbits =1

RM#: 6798 10/11 Revision: 1.3, 9/4/2024

Develop Linux CAN device driver in the Linux i.MX BSPs

testcase
testcase
testcase
testcase
testcase

/ #

17
17
17
17

ok

filters : can_id = 0x80000123 can_mask
sending patterns ... ok

rx : can_id = 0x80000123 rx

ok

1 rxbits

6. Runthe tst-rcv-own-msgs test on the target:

/ # tst-rcv-own-msgs can0

Starting PF CAN frame flow test.
checking socket default settings
check loopback 0 recv _own msgs 0
check loopback 0 recv_own msgs 1
check loopback 1 recv own msgs 0
check loopback 1 recv_own _msgs 1
PF_CAN frame flow test was successful.

!/ #

ok.
ok.
ok.
ok.
ok.

OxDFFFFFFF

256

Emcraft Systems Confidential

RM#: 6798

11/11

Revision: 1.3, 9/4/2024

	Develop Linux CAN Device Driver in the Linux i.MX BSPs
	TABLE OF CONTENTS
	1. Overview
	2. Requirements
	2.1. Detailed Requirements
	2.2. Detailed Non-Requirements

	3. Design
	3.1. Detailed Design
	3.1.1. Design: Demo project
	3.1.2. Design: Linux CAN Device Driver
	3.1.3. Design: CANSocket
	3.1.4. Design: CANSocket Test Suite

	3.2. Effect on Related Products
	3.3. Changes to User Documentation
	3.4. Alternative Design

	4. Test Plan
	4.1. Secure Download Area
	4.2. Downloadable Files
	4.3. Test Set-Up
	4.3.1. Hardware Setup
	4.3.2. Software Setup

	4.4. Detailed Test Plan
	4.4.1. Test Plan: Demo Project
	4.4.2. Test Plan: Linux CAN Driver
	4.4.3. Test Plan: CANSocket
	4.4.4. Test Plan: CANSocket Test Suite

